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Multi-timescale approach to analysis of exponential 
autocatalysis: limit cycle and global non-uniform 
sreauy parrerns -A-->.. -._II._-._ 

S R Inamdar, P Rajani and B D Kulkarnit 
National Chemical Laboratory, Pune 411 008, India 

Received I2 November 1990, in final form 15 March 1991 

Abstract. Limit cycle and non-uniform global steady patterns that appear in an exponen- 
tially autocatalysed reaction-diffusion system have been constructed using a two-timescale 
approach. The stability of these nonlinear structures is also examined. 

1. Introduction 

The present paper considers an alternate form of autocatalysis (Inamdar et al 1990) 
given as, 

k 
X + Y + Z  

U 
where the product Y systemically autocatalyses its own rate of formation by affecting 
the rate constant k. Ravi Kumar et al (1984) showed that this rate form has wide 
applications in several biochemical systems as also in explaining the phenomena in 
diverse chemical and combustion type of reactions. The exponential autocatalysis has 
received acceptance as a general model for class of reaction-diffusion systems (Bar-Eli 
1984) and results obtained by using the conventional autocatalysis such as the one 
used in Brusselator type of models compare well with this model system. As shown 
by Ravi Kumar et a/ (1984) the exponential autocatalysis has revealed the existence 
of multiplicity and oscillatory behaviour under homogeneous conditions. More recently 
the scheme in presence of diffusion was analysed with a view to establish bounds on 
the steady state solutions (Inamdar and Kulkarni 1990). The conditions for the existence 
of nonuniform solutions in the form of dissipative structures have also been analysed 
analytically (Inamdar 1990) and the behaviour near the Hopf bifurcation point has 
been derived using the reductive perturbation to obtain the description in terms of 
Ginzburg-Landau equation (Inamdar 1990). In the present work we employ the 
two-time scales (singular perturbation) method to construct the limit cycle and global 
non-uniiorm steady patterns that appear in this reaction-diiiusion system for a defined 
set of initial and boundary conditions. The stability of these nonlinear structures is 
also analysed. 

t Author to whom all correspondence should be addressed. 
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2. The exponential autocatalysis model 

The reaction-diffusion system is represented by the following coupled nonlinear partial 
differential equations: 

S R Inamdar et al 

ax 
( l a )  _- - D,AX +x,- X - Da,X exp(aY) 

ay 
-=D2AY+yo- Y+Da,Xexp(aY)-Da,Y ( I b )  

where the operator A = a2/ar2. Here, X and Y are the concentrations of species, and 
D,, D, are the diffusivities. It is assumed that Fick's law holds. The initial reactant 
concentrations are given by xo and y o .  Other parameters of the system are Da,, Da, 
giving Damkohler numbers for the two species, and a is the exponential autocatalytic 
parameter. 

The steady state homogeneous solution to system in equation (1) is given as, 

J t  

J t  

where x, and 0 are the steady state values of X, Y respectively. 
The existence of this solution in equation (2) depends upon the boundary conditions. 

In the present case, we assume the concentrations to be fixed at the boundaries i.e. 
Dirichlet condition. This boundary condition is given as, 

X(0, f )  =X(1,  f )  = x, 

Y(0,1)= Y ( l , t ) = #  
(3) 

All the calculations have been carried out for a one-dimensional system. To make this 
a well-posed problem, we add the following initial conditions, 

for f > 0. 

X(r,O)=X,,(r)=x, (40) 

Y(r,O)= Y,,(r)=yo. (46) 

Assuming the initial conditions xo and yo to be non-negative, there exists a non-negative 
pair (X(r,  t), Y(r, t))  of solutions of the system defined for O s r s l  and O S f < m .  
These solutions are infinitely differentiable functions of both r and f on (0, l)X(O, CO). 

Defining deviations from steady state as U =(;I, 
X = x + x ,  Y = y + #  

which obey homogeneous boundary conditions, and linearization of the exponential 
tenn 

exp(ay) = 1 + a y  

results in the following evolution equations, 

( sa )  

( 5 6 )  

J X  
-= D,Ax-(1+ Da, e"')x-(aDa,x, e"')y-nDa, e"'xy 
J t  

ay = D,Ay + Da, e"@x + (ax,Da, eo' - Do, - l)y + aDa,  e"'xy. 
a t  
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The boundary and initial conditions, in terms of the deviation variables, are, 

x(0, f) = x( 1 , t )  = y(0, t) = y (  1,  t) = 0 f a 0  ( 6 )  

and, 

x(r, 0) = Xjn(r)  -x, (7) 

y(r,O)= Yjn(r)-d O s r s l .  (8) 

Introducingq=D,/D,,andD=D,foranyparameter y=(a ,xo ,yo ,  Da, ,Da, ,  D, q ) ,  
the linear differential operator can be written as, 

). (9) 
q D A - ( l + D a ,  e"') -ax,Da, eye 

~ ( 7 )  = ( Da, eya DA+ax,Da, e"'-(l+Da,) 

The nonlinear function is represented as 

So, the original equation (5) becomes, 

u , = L ( y ) u + N ( y ,  U). (11) 

We are now interested in finding out the asymptotic solutions of equation (11) for 
f + m which are non-trivial solutions U F 0 with a boundary condition described in 
equation (6). 

The sufficient condition for instability with respect to boundary condition (6) is 
that the solution U = O  be unstable to small disturbances. Hence, the linearized form 
of equation (1 I ) ,  

- - L ( y )  u = o  
[dJt 1 

would have a non-trivial solution for the specified boundary condition 
The solution to equation (12) can he given as, 

u(r, t ) = E ( r ) e A '  (13) 

where E( r )  = ( { ( r ) ,  K(r))T corresponds to a solution to the space-dependent part, and 
h is the eigenvalue for the time-dependent part. Then the eigenvalue problem to steady 
state version of equation (11) can be written as, 

[L(y)-AI]E(r)=O. (14) 

The solution to equation (12) then becomes, 

The eigenfunctions for any wavenumber n, can be written for the Dirichlet problem 
as, E ( r )  = (f;,:;:), where, 

& ( r )  = sin n m  K,,(r) = M. sin nrr. (16) 
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Using equations (9) and (141, we can write the characteristic equation in terms of trace 

S R Inamdar et a l  

Tr(y, n )  and determinant Det(y, n )  as, 

A i  -Tr(y, n)A,+Det(y, n )  =O. 

The trace and determinant expressions are given as, 

Tr(y, n )  =(ax&, em' - Da2- 1)+ (1 + Da, e-') - n2rr2D(1 + 7) 
Det(y, n )  = (n2rr2D)'7 -n2rr2D[q(ax,Da, eUR -Da2-  1)-(1+ Da, e"')] 

-[ax,Da, e"@-Da,- 1](1 +Da, e"')+ax,(Da, 

The eigenvalues are then obtained from equation (17) as, 

2Az = [ [Da,  e"'(ax, - 1) - (Da,+ 2)] - n2n2D(1 + 77)] *{(n2rr2D)'(1 - 7)' 

+2(1- 7)n2rr2D[Da,-Da,  e"'(ax,+ l)]+Da: 

+Do,  e"a[(ax,-1)2Da, e"a-2Da,(ax,+1)]}1'2 

and, the eigenfunctions can be obtained in terms of the eigenvalues as, 

A:+(l+Da, e"')+ n2x2@+ax,Da, e"@M: =O. 

Note that, the eigenvalues have negative real part if and only if Tr(L(y))<O and 
Det(L(y)) > 0, in which case the solution is linearly stable. If either Tr( L( y ) )  > 0 or 
Det(L( y ) )  < 0, then the solution is linearly unstable. If Det( L( y ) )  changes sign, an 
exchange of stability takes place as one eigenvalue of L( y )  changes sign. This results 
in bifurcation of steady state solution branches. If Det( L( 7 ) )  > 0 and Tr(L( y ) )  changes 
sign, exchange of stability occurs as the real part of the eigenpair of L( y )  changes 
sign. This corresponds to Hopf bifurcation, which generates a non-trivial branch of 
periodic solutions. However, if Det(L( 7)) < 0 when Tr(L( 7 ) )  changes sign, no bifurca- 
tion occurs, and hence there is no exchange of stability. This is depicted in figure 1. 

In this present study, we are interested in analysing the possible modes through 
which instability sets in ending up with Hopf bifurcation. This can happen in two ways. 

(i) At some y = yc ,  an eigenvalue A:c crosses the imaginary axis with non-vanishing 
imaginary part. This case is in accordance with the conditions, that for critical value 
of parameter yc, and for any wavenumber n if trace is negative and determinant is 
non-negative, the solution is stable. For the critical value of wavenumber n, we may 
have a vanishing trace condition, leading to Hopf bifurcation which is the onset of 
instability. To find the critical value n, we then put the trace derivative d Tr(y, n)/dnj,=, 
equal to zero. This yields the result n c =  1. Substituting for the critical value of n we 

{ D e t [ L ( ~ ) l > o } ~  {Det[L(r)l>O} 
Tr[L(y)l<O Tr[L(y)l> 0 

Figure I .  Stability exchange diagram; If Det(L(y))>O when Tr(L(y)) changes sign Hopf 
bifurcation occurs; However if Det(L(y))<O when Tr(L(y)) changes sign, there io no 
exchange of  stability and no bifurcation. which is depicted by the broken line; ss denotes 
bifurcation from one steady state to another. 
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obtain the locus of points corresponding to neutral stability (Re A:, = 0) in the plane 
D a , ,  Da2 as, 

Da, em'(ax. - 1) - ( D a , + 2 )  = n2D(1 + 7). (22) 
(ii) At y = yc, the only value of n, that crosses the imaginary axis from negative 

to positive has vanishing imaginary part. This means that at critical value ofwavenumber 
n, trace is negative and determinant is zero, while for other values of n the solution 
is stable as trace is again negative and determinant is non-negative. Then the critical 
value ofwavenumber is obtained by putting determinant derivative d Det(y, n)/dnl.=, 
equal to zero. This gives, 

(23) nc=  ~ ~ T " D ~ ' ~ * ~ ~ ~ / ~ { ( ~ +  Dad+ Da, e"'[( 1 +Do,) -ax . ] } ' / " \ l .  

Also, the locus of neutrally stable states is given by the following equation, 
{7[(1+DaZ)+Da,  e"'[(l+ D a , ) - a ~ , l l ) ' / ~  

Inserting equation (24) into the condition Tr(L( yc,  n,)) < 0, we obtain an inequality as, 

(1 - 7)[7[axsDa,  euB - (1 + Da, ) ]+ ( l  + Do, e"')] <0 (25) 

1<7 or D, > D2. ( 2 6 )  
Figure 2 depicts for some specific values of Da, the linear stability diagram in the 

and from the sufficiency condition of minimum Det(y, n )  one obtains, 

1 1 1 I I 

I 
T r e O  
DetsO 

0.20 

D e t - 0  Det=O 

4.00 12.00 20.00 0.00 

FigureZ. Stabilitydiagram in the neighhourhood of the homogeneous steady State [equation 
(Z)]. Region I is of stability. Region l l la  [equation (22)] and ll lb [equation (24)] contains 
the unstable zone between the solid line and dotted line. In region llla along a there is 
bifurcation to limit cycle behaviour. lh region Illb, along b spatial dissipative structures 
can occur. I n  region IV limit cycle behaviour i s  expected. 
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neighbourhood of U = 0. It should be noted that in this work the diffusion plays the 
destabilizing role, where the mixing in a stirred vessel is very poor. 

S R Inamdar et a1 

3. Multiple timescale analysis 

In this section, we would apply the technique of multiple time scale to obtain the 
global non-uniform steady patterns. The multiple time scale analysis takes advantage 
of the existence of slow and fast time scales, inherent in the system to construct an 
asymptotic solution. The method has been extensively employed and illustrated in the 
literature (Newell and Whitehead 1969, Nayfeh 1973, Onelova and Ross 1974, Bender 
and Orszag 1978, Bonilla and Velarde 1979, Keener 1982, Ramakrishna and Amundson 
1985, van Kampen 1985). 

To construct the non-uniform steady solution that branches at Do, = Da,,, in region 
IIIb of figure 2, we see that in terms of a small expansion parameter E the perturbations 
upon the trivial fixed point x = y  = 0 can be arbitrarily written as, 

h(r,  0) = g ( r ,  0) =O. ( 2 7 ~ )  

The two time scales used in the asymptotic analysis are defined as, a fast time scale 
i= t, and a slow scale T = [ D U , ( E ) - D ~ , ~ ] ~  Now we define following expansions for 
the variables x and y ,  

m m 

x ( r , t , ~ ) =  1 E ’ x , ( r , f . ~ )  y ( r , i , T ) =  E c’y,(r, i ,T).  (28) 

Note that the equation is exact as the series expands to all powers of E and the 
corresponding expansions for initial and boundary conditions as, 

initial condition: 

, = I  I = ,  

boundary condition: 

x , ( O , r , ~ ) = x , ( l , r , ~ ) = y , ( O , r , ~ ) = y , ( i , r , ~ ) = O .  ( 2 9 ~ )  

Also the expansion for the bifurcation parameter Da,, assuming it to be analytic in E 

neighbourhood of Da,, can be written as, 

D ~ , ( E )  = Da,,+ Da;(o)~+fDay(o)~~+O(~’). (30) 
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In terms of these expansions, L( y )  and N (  y, U )  become, 

L(Da,) = 
( vDA - (1 + Da,, e"') 

Da,, ePR 
--ax,Da,, ea' 

DA + ux,Da,, eya - Da, - 1 

(31 )  

e*' -ux,Da:(O) ea' 
+'($::em' ax,Dal(O) eo' 

+" \ Da;(O) eye 
,/-Da:i(O) eyB -nx,Da;(O)e"'\ 

ax,Da:'(O) em' 

and, 

-a e"'Da,,x,y, 
(Y e"'Da,,x,y, 

N ( D a , , u ) = & *  

(33) 
a a  a _-_  - + [ D a : ( O ) ~ + " , a : ( 0 ) & ~ + 0 ( ~ ~ ) ] - .  
a t  a i  a 7  

Here onwards, the tilde - on t will be dropped. 

following linear equations, 
From equations (12) and (31), collecting terms of equal powers of E we obtain the 

ax, -Da:(O)--+x,(-Dal(O) e"')+y,(-nx,Dal(O) e'"e)-x,y,a e"'Da,, 
a7 

ay I '',' \-Dal(O) G+x,(Daj(O) e"") +y,(-Qx,Dal(O) em') +x,y,a e"'Da,, 



2546 

Here the dominant eigenvalue is A:c= 0, while the eigenmodes corresponding to all 
other eigenvalues decay exponentially with f. Equation (37)  therefore reduces to, 

S R lnamdar et a1 

where (EDT) denotes exponentially decaying terms. 
The coefficients c:<(O) can be obtained using equations (27) ,  (28) and ( A 7 )  as, 

= 2  rn' {sin n?ir(h,(r, 0 ) -ax ,Mn*g, (r ,  0)) dr}. (39 )  
_ Y  

Thus, constants cz  are directly expressed in terms of the initial condition (27).  Using 
the definition of Fredholm alternative the coefficient c:~(T) can be obtained from the 
E' equation in the set of equations (34) - (36) .  It is convenient to introduce the following 
average which is useful when we take the limit 1 + m. 

wheref is some arbitrary function in this equation. All products of e:c with EDT then 
vanish according to this definition. 

From equations (35),  (40)  and (A91 we obtain, 

2[7 (ax ,Da ,  eye - (1 + D a 2 ) )  + (1 + Da, e"')] -2Da ,  e"'(l+  ax,^) 
n.. - 0 8  

I "U, c J 

where 

I (I e""Da,,[v(nx,Da, e"'-(l+ Da2))+(1 + Da, eea) - 2 n x , ~ D a ,  e"'] =I 2ax,Dal e m a h r r  

when n, is odd 

= O  when n ,  is even, 

When n ,  is odd and 

(42) 
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then we have 

where, 

1 - q( 1 + DaJ 
v =  ca,(l-T) 

3n,aDa~(0)xs 
4 

1 - 1) (1 + Da,) 
Da,,[l +Da,  e"'(1 - rrx,q)  - q(l+Da,)] '  C:Jm) = - 

Integrating equation (43a) we obtain, 

2541 

(436) 

(44) 

From equations (37) and (45) and after substituting for, M:= from equation (A8), we 
obtain to first order in E.  

if the trivial solution is to be asymptotically stable for D a ,  > Da,,. To have such a 
case c L ~ ( T ) = O  for t+m.  This is obtained by imposing a condition, 

ur= u(Da, -Da, , ) t<O as 1". (47) 

ii foiiows from above iiiai, 

Since q > 1, we have, q( 1 + Da,) < 1. 
Equation (48) can also be stated as follows: 

-Da;(O) e"' -ax,Dal(O) e*' 
J E  Da;(O) e*' ax,Da;(O) em' 

Then, using equation (31), it can be shown that, 

Hence, equivalently equation (48) can be stated as 
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In equations (496) and ( S O )  we have on the left-hand side, an inner product between 
2zc and the vector obtained by the operation of [JL(y , ) /Je] ,= ,  over E:<, 

For the sake of simplicity, we choose Da;(O) = 1 in equation (30). This gives, 

S R Inamdar et a1 

Da, -Do , ,=  E +  O ( E * ) .  ( s l a )  
To first order in E, we then have the solutions x and y as, 

X = ~ : ~ ( T ) ( D ~ , - D ~ , , )  sin n , v r  

y = c:c(T)Mzc(Da, - Da,,)  sin n , m .  (516) 

If czc(0)  and c:c(m) have the same sign, with Da, < Da,, ,  then as !em, the following 
asymptotic state will be reached. 

In more explicit terms, this becomes, 

I 1 - ~ ( 1  +Da , )  
D a , [ l +  Da,  e""(1   ax,^) - ~ ( 1 t  Da,)]  

(;::;) - ( ; ) + ( 3 n c ~ D ; ; ( 0 ) x .  X 

x (i:) (Da , ,  - Da,)  sin n , m +  0[( Da,,  - Da,)2] .  (53) 

The derivation assumes that the signs of c:(O) and ct(m) are similar. In the instance 
the signs of these differ, the denominator in equation (45) vanishes for a time interval 
of the order of [ v(Da, , -  Da, ) ] - ' .  The solution after this time goes out of the E region. 
Also, when Da, is slightly larger than Da,,  we would obtain the same equation for x 
and y ;  however, the solution is now unstable and the neighbouring concentration 
profiles diverge with time. The initial perturbation for this case with the signs of ctc(0) 
and c;<(m) different, will decay and the solution will culminate into the trivial asymptoti- 
cally stable point. 

The calculation of c : ( T )  for the case when n, is even requires us to consider the 
next higher order equation ( 3 6 ) .  After some algebraic manipulations we then have 

(54) 

The particular solution to equation (54) is written as 

uy=  p:(T)E:(r).  
n + n ,  

Knowing that, 

U y c ) Z : ( r )  = A : ( r )  

the equations (54) and (56) give 

Using equation (A7), we get the result 
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where 

P. = 
* sn;  Do,,( 1 + ux,M;){ q[ux,Da, e,'- (1  +Da,)]+( 1 + Da, e"')) 

n( n 2  -4n:)rrS; 2x,Da,(l -ax,M:,)  
(59) 

(60) 

The general solution of equation (54) then reduces to 

U 2 =  bTe( .)Ea( I)  f C:c2( T ) n ( r ) + (  EDT) 

where 

n irodd 

Substituting equations (60) and (61) into equation (36) we obtain 

(62) au, 
[ i - ~ y . ) ] u ~  = -foa:(o) -+ ar ~ y , ) u , +  N,,,(Y,, U,, u2)  

where 

and 

N ~ Y , ,  U,, uJ=(-:)a e " 8 D a d x l ~ 2 + x 2 ~ d .  (636) 

Multiplying equation (62) with gTc(i-) and applying Fredholm alternative with equation 
(40), the result is 

where 

and 

P =  
-Da,,{ax,5(r)[Dal em'(axsq - 1 ) - q ( l +  Da2)+111 

2(1- d 1 +  Da2)) 
-Da,,{w(r)[l+ Da, em@- q[(I+ Da,)+ax,Da, e"']]) + 

2 ( 1 - d l + D a 2 3 )  

In the limit T+OO one notices that 

C;~(OO) = *[D~:(O)/Z~] ' / ' .  

Therefore equation (64) using equation (67) becomes 

Integrating equation (68) we obtain 

C:~(T) = I C T ~ ( O O ) ~ C ~ ~ ( O )  e"'[c;c2(o)(e2v'- I ) +  ~:-~(m)] - ' /~ .  
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It is interesting to note that depending on the positive or negative sign of c:(O), the 
solution C;(T) goes to lc:(m)l or -Ic;(co)l. The dissipative structure at f + c c  therefore 
depends only on the sign of the initial conditions. The asymptotic expansion of the 
solution in this case gives, 

S R Inamdar et al 

As t+m,  

Conc!unive!y, we CBE s ly  i~ !he end !hilt, when Dci > Deic, then the t~.::,ia! so!u!ic:: 
is asymptotically stable, and vice-versa in the case of odd n,. 

4. Stability analysis of limit cycle 

We shall begin with the neutral stability curve given by equation (22) 
Da, e"'(ax, - 1) - (Da,+2) = a2D(1 + 7) 

A: = +i{(Da, emB)2ax.v -(rr2D7 + l)2}"2. 

(72) 
and note !hat the critical eigenvalue from equation (20) is 

(73) 
From equation (21). we have 

We assume the solution to equation (34) with nc=  1 ,  as 
U,( r, t, T )  = Re{C:( 7) ei""ET(r) + c;( 7) e-'%;( r)}+(Em). (75) 

The above equation contains two coefficients, which are unknown. It would be appropri- 
zte !e define B XPW coefficient 2s fd!o::s, 

C,(T)=+[C:(T)+ C;*(T)]. (76) 

U , ( r ,  I ,  T)=C1(T)ei"'E:(r)+CC+(EDT) (77) 

In addition, we have, M;= M:* and e-'"''- ( r )  = [e'-'-+ =, (r)]* we can then write 

where cc stands for complex conjugate 
- I ~  ~ inc iniiiai condiiion for c , ( T j  is given by, 

2 1; {hs(r, 0) -ax,M:g,(r, 0)} sin r r  d r  
(1  - L ~ x ~ M : ~ )  c,(O) = 

Substitution of equation (75) into equation (35 )  gives, 

= {-Dal(O) sin a r (  c: e""' + cc) + ( cI e""' + cc) sin ar[ -Da;(O) ems] 
+ ( c ,  e'"'M:+cc) sin ?ir(-ax,Da:(O) e"')+sin2 ar[(M:+ M:*)lc,I2 

(79) +c2 2lUt 
1 e M: + C C ] ( - ~  e"'Da,,)} + (EDT) 
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and 

[~-[ux,l)a,,c"* - ( I + D a J l - D P  yZ+Da,,e"'x, I 
={-Dnl(O) sin m(clM:eiY'+cc)+(cl e io '+cc)  sin m(Da;(O) e"') 

x (c, e'"'M:+cc) sin m(ax,Da;(O) e"') 

Now, defining an average 

and using Fredholm alternative one sees that Dai(0) =0, if e, is non-vanishing. Now, 
for the eigenvalue problem for the operator L( u2) we have, 

Integration of the system in equation (79) and (80) yields 

u2(r, t, ~ ) = b ~ ( T ) e ' ~ ' 3 : ( r ) + c c + c : ( T ) e ~ ~ ~ ' n ( r ) + c c  

+(C,(T)('[n(r)+cC],=o+ (EDT) 

where, 

nirodd 

and, 

-8 
n( nz - 4) 

[ 1 - ax*M:'] P: = 

(87) 
P: 

" = 3  A,  

m 

[R(r)]w-o= 1 -1 {.bf:(l+ax&f3}E:(r). 
nirodd 

To obtain e,(.), we substitute for U ,  and u2 from equation (77) and (84) respectively 
into equation (36), with Dal(0) = O .  Multiplication of the result with 2 : ( r )  and using 
the identity in equation (81) as before, yields following differential equation, 
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where 

S R Inamdar et a1 

-e"'(1+ ~x ,M:*)~  
(1 - ax,M:*') 

U =  

and, 

-2 sin2 p r  d r  (I e"'Da,,[f*(r) + [ f (  r)+cc],=,+ M:o*(r) 
+Mt*[o(r)+cc]a=,]{l  +ax$ft*J 

K =  '. (90) (1  - ax*M:*2) 

Writing, ~ ~ ( 7 )  = C(T) e-""' where C(T) and P ( T )  are yet to be specified, and then 
separating the real and imaginary parts in equation (88) gives us, 

Da:'(O) dc  Day 
2 d r  2 

- c R e v + c ' R e ~  

From equation (91a), as 7'00 we can write, 

c(coj= 1-- 2 
, r DaY(0) Re u 1 1 / 2  

- ReK] ' 

Using equation (92), equation (916) can be rewritten as 

dc  
R e v  1-- -= d7 [ 

The solution to this equation is 

c(o)c(m) eRe"' 
l]}'/* {c(00)' + c(o)2[e2Re "'- C( 7) = 

The solution to unknown phase can be written using equations (916) and (94), 

which for large values of time becomes 

Finally, to first order in E. the following result is obtained: 

U( r, f, E )  = E 
Zc(O)c(00) exp[-(Da,,-Da,) Re ut] 

{~(m)~+c(O)~{exp[-2(Da,,- Do,) Re ut] - 1}}1'2 

(42) 

(93) 

(94) 

m 

+ E  Re 1 c ~ ( O ) e ^ ~ ' S ~ ( r ) + O ( & ' )  
n = 2  

(97) 
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Equation (97) reduces to following form as t + m: 

Im Re 'j]r+0(lDal- Da,,i). (98) 
Re K 

5. Conclusions 

The paper employs the two-time scale method to obtain the limit cycle and global 
non-uniform solutions for 'an exponentially autocatalyzed reaction-diffusion system. 
Sufficient condition for the steady uniform distribution of reactants in the presence of 
diffusion is established and stability of such states are examined. Global non-uniform 
solutions depending on whether n,, the critical wavenumber, is even or odd, are then 
constructed and  given respectively by equations (46) and (70). Conditions under which 
the dissipative structures are asymptotically stable or when the inhomogeneous steady 
state solutions lose their stability are also identified. In a similar fashion equation (97) 
describes the limit cycle solution, the stability of which depends on whether Da, 
exceeds Da,,  or not. In addition, we observe that, for sufficiently large values of 
diffusion parameters the limit cycle may not exist. 

The important feature of the method of multiple time scales is that in addition to 
allowing us t o  construct the non-uniform and  limit cycle solutions, it affords information 
on their stability. The detailed account of the evolution of initial disturbances upon 
the trivial steady state of the system is thus possible. 
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Appendix. Linear operator properties 

In this section, we will describe some of the important properties of the linear operator 
L ( y )  defined in equation (9), which are relevant to  the analysis presented in this paper 
(Bonilla and Velarde 1979, Ramakrishna and  Amundson 1985). 

( 1 )  If the eigenvalues A: are complex, then the eigenvector M i =  M:*, where * 
denotes complex conjugation. 

(2) Let F be the space of analytic functions u ( r )  = (;!:{) such that u ( 0 )  = U(]) =0, 
then, the inner product is defined as 

(3) From the definition of the eigenfunctions, we can write that, 
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(4) Let i ( y )  be the adjoint operator of L ( y )  and 

sin nar  
N :  sin n a r  

the eigenfunctions of the adjoint operator with same BC. Then, we have a relation, 

N :  = -ax,M:*. (A3) 
(5) Also, we have following inner products 

A* -* (s ,~s . )  =f( 1 - ~ X , M ; M : ) S , ,  

and 
AT -* (ani&) = 0. 

Thus, the orthogonal set of E:(r) in F is defined, and for any arbitrary functionf(r) 
belonging to F we have an expansion 

m 

f ( r ) =  X ( & G ( r ) + p i E i ( r ) )  (A6) 
"=I 

where 

(6) At the critical point, Da, = Da,, if the eigenvalue with vanishing real part is 
real (i.e. simple zero eigenvalue), then, 

1 
M +  = -  aB {q[ax ,Da,  e'"-(l+ D a , ) ] + ( l +  Da, e"')}. (A8) 

a' Zax,Da,e 

(7) Using equations (23) and (A8), we obtain, 

q = ax,MT,*. 
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The existence. of a kinetic roughening transition in d' = 2 for models belonging 
to the Kpz-class is somewhat controversial. Since dimension d' = 2 is the marginal 
dimension, no analytical prediction is known for this case. The results of some nu- 
merical simulations of discrete models [22, 19, 201 have been interpreted as evidence 
of the transition. However, other papers [21, 2.1, 371 show that there is a crossover 
rather than a sharp transition; a direct numerical solution of the KPZ equation [38] 
does not indicate any transition either. 

We have observed crossover behaviour in two cases: either with increasing dise- 
quilibrium for temperature above the roughening temperature T = 2TR (figure 4(a)) 
or with increasing temperature for sufficiently large disequilibrium (Aii = 10) (figure 
5).  In the former case the crossover occurs for 1 < Ab < 8 and in the latter for 
a temperature around T = 1.5TR. A similar crossover with increasing temperature 
as in figure 5 is also seen for lower mnstant disequilibrium A,!i = 5 (not shown). 
On the other hand for a temperature helow TR (T = 0.7TR) we do not observe 
any crossover: the roughness remains logarithmic even for very large disequilibrium 
(figure 4(b)). 

For large disequilibrium and at temperatures of the order of TR, the exponent 
extracted from our data is lower than that measured by Meakin ef al [7] and by Liu 
and Plischke (361. For example for T = 2TR, d p  = 50 and N = 128 we get 
C = 0.22.5. This value is close to a value C = 0.25 obtained by Amar and Family 
[I71 in the case of the restricted SOS model (for the low-temperature phase). Tb allow 
a comparison with the results of Meakin ef a1 and of Liu and Plischke we also ran 
our program for the case of probabilities independent of the surroundings (infinite 
temperature Limit) and p A p  = 25, i.e. the same p a p  as in the case T = 2TR and 


